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ABSTRACT

In this paper, we study the Gauss diagrams for periodic virtual knots (Theorem 3.1)
and show that the virtual knot corresponding to a periodic Gauss diagram is equivalent
to the periodic virtual knot whose factor is the virtual knot corresponding to the factor
Gauss diagram (Theorem 3.2). We give formulae for the writhe polynomial and the affine
index polynomial of periodic virtual knots by using those of factor knots (Corollary 4.2,
Corollary 4.6).

Keywords: Gauss diagram; periodic Gauss diagram; periodic virtual knot; covering
graph; affine index polynomial; writhe polynomial.

1. Introduction

A knot K is an embedding K : S1 ↪→R
3 of S1 into the 3-space R

3. A diagram D

is a projection of K(S1) into the plane R
2, in general position, with under/over

information. The Gauss diagram of K is the domain S1 on which the crossing
information of D is encrypted by chords with suitable information. A Gauss diagram
can be a useful tool to study knots. Every Gauss diagram cannot be realized by
classical knots, in general. In fact, the realizations of Gauss diagrams are virtual
knots.

A virtual knot diagram is a generic immersion of S1 into the plane R
2 possibly

with some encircled crossings without under/over information. A virtual knot K is
called a periodic virtual knot of order n (n ≥ 2) if it admits a virtual knot diagram
D, called an n-periodic virtual knot diagram, in R

2 such that D misses the origin
and is invariant under the rotation ϕ of R

2 about the the origin through 2π
n .

In this paper, we study the Gauss diagrams for periodic virtual knots (Theo-
rem 3.1) and show that the virtual knot corresponding to a periodic Gauss diagram
is equivalent to the periodic virtual knot whose factor is the virtual knot correspond-
ing to the factor Gauss diagram (Theorem 3.2). We give formulae for the writhe
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polynomial and the affine index polynomial of periodic virtual knots by using those
of factor knots (Corollary 4.2, Corollary 4.6).

2. Preliminaries

A link is a finite disjoint union of knots: L = K1 ∪ · · · ∪Kn. Each knot Ki is called
a component of the link L. Two links L and L′ are equivalent (or isotopic) if one
can be transformed into the other via a deformation of R

3 upon itself. A diagram
of a link L is a regular projection image p(L) from the link L into R

2 such that the
over-path and the under-path at each double points of p(L) are distinguished.

In 1996, Kauffman introduced the notion of a virtual knot. A virtual knot
diagram is a knot diagram in R

2 possibly with some encircled crossings without
over/under information. Such an encircled crossing is called a virtual crossing, see
Fig. 1 as example.

Two virtual knot diagrams are equivalent if one can be transformed into another
by a finite sequence of generalized Reidemeister moves in Fig. 2, which consists of
classical Reidemeister moves and virtual Reidemeister moves. An equivalence class
of a virtual knot diagram is called a virtual knot.

From a topological viewpoint, the underlying space of a diagram of a link is a
4-valent graph embedded in S2 in Fig. 3.

Fig. 1. A virtual trefoil knot diagram.

R1 R2 R3

Reidemeister moves

Virtual Reidemeister moves

Fig. 2. General Reidemeister moves.
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D  

Fig. 3.

Here, we review the results in topological graph theory that can be used to
study links, see [1, 5, 10] in detail. A graph Γ consists of a finite set V (Γ) of vertices
and a finite set E(Γ) of edges. If the edges of a graph Γ have a direction associated
with them, the graph Γ is called a directed graph. An embedding of Γ into a surface
S is called a 2-cell embedding if each component of S\i(Γ), called a region of the
embedding, is homeomorphic to the standard disc. For a vertex vi ∈ V (Γ), let
V (vi) be the set of all vertices incident to vi, and let Pvi : V (vi) → V (vi) be a cyclic
permutation on V (vi). We call (Pv1Pv2 · · ·Pvn) a rotation scheme of the embedding.
It is well-known that there is a one-to-one correspondence between the set of all
embeddings of a graph and the set of all rotation schemes.

Let Γ be a graph and A a finite group. Let φ : E(Γ) → A be a function, called
a voltage assignment, satisfying φ(e−1) = φ(e)−1 for all e ∈ E(Γ) where e−1 means
the edge e with the reversed orientation of E(Γ). The values of φ are called voltages
and A is called the voltage group. We call a triple (Γ, A, φ) a voltage graph. The
covering graph Γ ×φ A for (Γ, A, φ) has the vertex set V (Γ) × A and each edge
e = uv of Γ determines the edges (e, g) = (u, g)(v, gφ(e)) of Γ ×φ A, for all g ∈ A.
Notice that Γ ×φ A is a |A|-fold regular covering space of Γ; in fact, every regular
covering space of Γ can be obtained in this manner.

Now consider a voltage graph (Γ, A, φ) which is 2-cell embedded in an orientable
surface S, as described algebraically by the rotation scheme P = (P1, P2, . . . , Pn).
We define the lift P̃ of P to Γ ×φ A as follows: if Pv(vu) = (vw), then

P̃(v,g)((v, g)(u, gφ(vu))) = (v, g)(w, gφ(vw)),

for each g ∈ A, see Fig. 4. Since P̃ = {P̃(v,g) | (v, g) ∈ V (Γ ×φ A)} is a rotation
scheme of Γ×φ A, it determines the natural embedding of Γ×φ A into a surface S̃.

v

wu

(vw)(vu)

(v,g)

(u,g

(vw)(vu)

(vu)) (u,g  (vw))

Fig. 4.
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Fig. 5.

Example 2.1. Let a virtual diagram K be given in the left of Fig. 5 and
φ : E(K) → Z3 a voltage assignment defined by φ(e1) = 2, φ(e2) = 0, φ(e3) = 1 and
φ(e4) = 2 where e1, e2, e3, e4 ∈ E(K). Since K has 2-vertices, c1 and c2, 4-edges,
e1, e2, e3 and e4, and since the voltage group Z3 has three elements 0, 1 and 2, the
covering diagram has 6-vertices, (c1, 0), (c2, 0), (c1, 1), (c2, 1), (c1, 2) and (c2, 2), and
12-edges, (e1, 0), (e2, 0), (e3, 0), (e4, 0), (e1, 1), (e2, 1), (e3, 1), (e4, 1), (e1, 2), (e2, 2),
(e3, 2) and (e4, 2). Since φ(e1) = 2, and the initial vertex of e1 is c1 and the terminal
vertex is c2 in the base diagram K, it follows that for i ∈ Z3, the edge (e1, i) of the
covering diagram runs from the vertex (c1, i) to the vertex (c2, i +2). Since φ(e2) =
0, and the initial vertex of e2 is c2 and the terminal vertex is c1 in the base diagram
K, it follows that for i ∈ Z3, the edge (e2, i) of the covering diagram runs from
the vertex (c2, i) to the vertex (c1, i). Similarly, we can draw (e3, i) and (e4, i) for
i ∈ Z3. Then we obtain the covering diagram K×φ Z3 as seen in the right of Fig. 5.

Notice that there are many new born 4-valent vertices in the diagram of the right
part in Fig. 5 which are neither classical nor virtual crossings. By considering such
vertices as virtual crossings, we get the virtual diagram, on which Z3 can act, see
Fig. 6. Note that the factor (K ×φ Z3)∗ in Fig. 6 is equivalent to the base diagram
K in Fig. 5. In fact, every m-periodic virtual link diagram can be constructed in
this way.

3. Periodic Gauss Diagrams

We take a short review how to construct a Gauss diagram from a given knot,
see [3, 6]. Let K be an oriented virtual diagram with n classical crossings. Fix a
point, say the initial point, on the arc in K. Draw a circle with the initial point.
Without loss of generality, we assume that the circle is oriented counterclockwise.
Go along the arc from the initial point to that point according to the orientation of
K. We have a sequence {c1, c2, . . . , cn} of labels for the crossings. These sequence
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Fig. 6.

is labeled in sequence from the initial point to that point on the circle, each label is
repeated twice to indicate a walk along the diagram, we assign the sequence on the
circle. That is, the classical crossings c1, c2, . . . , cn of K correspond to 2n vertices
co
1, c

u
1 , co

2, c
u
2 , . . . , co

n, cu
n on the circle, where co

i and cu
i correspond to the over-arc and

the under-arc of ci, respectively. If the circle consists of the follows: the chords are
connected to the co

i and cu
i , the chords are endowed with arrows from over-arc co

i

to under-arc cu
i with the signs of crossings for each i for each 1 ≤ i ≤ n, the result

is called a Gauss diagram of the knot. See Fig. 7 as an example.

c

sign(c)=+1

c

sign(c)=−1

Proposition 3.1 ([4]). A Gauss diagram defines a virtual knot diagram up to
virtual Reidemeister moves.

Observe that G is the Gauss diagram of a diagram K if and only if whenever
e is an edge of K with the initial crossing ci and the terminal crossing cj , there is
the corresponding edge e′ of G on the circle whose ends meet two chords c′i and

Fig. 7.
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c′j . The directions and the signs on the chords c′i and c′j depend on the crossing
information of ci and cj , respectively.

Let K be an oriented virtual knot diagram with n vertices c1, c2, . . . , cn and
G(K) the associated Gauss diagram of K. Let φ : E(K)→Zm be a voltage assign-
ment on E(K). Suppose that the net voltage

∑
e∈E(K) φ(e) is relative prime to m

so that K ×φ Zm is a virtual knot, see [10, Theorem 10-8]. From now on, we will
try to find out the Gauss diagram of K ×φ Zm.

Note that a Gauss diagram G(K) can be viewed as a 3-valent graph whose edges
consist of the edges on the circle and chords. The edge e′ of G(K) on the circle
corresponds to the edge e of K. Define a map ϕ : E(G(K)) → Zm by

ϕ(e′) =

{
φ(e), if e′ is an edge on the circle of G(K);

0, if e′ is a chord of G(K).

Since ϕ is a voltage assignment, we have the covering graph G(K)×ϕ Zm. From
the construction of the covering graph, we can lift the direction information and the
sign information of chords of G(K) to those of G(K) ×ϕ Zm, so that the covering
G(K) ×ϕ Zm can be a Gauss diagram on which Zm can act. We call the Gauss
diagram G(K)×ϕ Zm an m-periodic Gauss diagram whose factor Gauss diagram is
G(K). See Fig. 8 as an example.

Fig. 8.
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The following is one of the main results.

Theorem 3.1. The periodic Gauss diagram G(K)×ϕ Zm is the Gauss diagram of
the periodic virtual knot K ×φ Zm.

Proof. Let ẽ be an edge of K ×φ Zm. Then there are an edge e in E(K) with
the initial vertex ci and the terminal vertex cj, and an element g in Zm such that
ẽ = (e, g) with the initial vertex (ci, g) and the terminal vertex (cj , g + φ(e)). The
corresponding edge e′ of the Gauss diagram G(K) of K meets two chords c′i and
c′j , while the direction and the sign on the chords c′i and c′j depend on the crossing
information of ci and cj , respectively.

From the construction of the covering G(K) ×ϕ Zm, we know that for the edge
e′ on G(K) and the element g in Zm, the edge (e′, g) meets chords (c′i, g) and
(c′j , g +ϕ(e′)), and the direction and the sign on the chords (c′i, g) and (c′j , g + ϕ(e′))
coincide with those of chords c′i and c′j , respectively.

On the other hand, the edge (e, g)′ of the Gauss diagram G(K ×φ Zm) of K ×φ

Zm corresponding to the edge (e, g) of K ×φ Zm meets two chords (ci, g)′ and
(cj , g +φ(e))′, and the direction and the sign on the chords (ci, g)′ and (cj , g + φ(e))′

depend on the crossing information of ci and cj , respectively. Because the crossing
information of crossings (ci, g) and (cj , g +φ(e)) coincides with that of the crossings
ci and cj , respectively.

If we identify the chord (ci, g)′ and the edge (e, g)′ with the chord (c′i, g) and the
edge (e′, g), respectively, then (cj , g + φ(e))′ =(c′j , g+ϕ(e′)) since ϕ(e′)= φ(e). Then
the Gauss diagram G(K)×ϕ Zm is the same with the Gauss diagram G(K ×φ Zm)
because the direction and the sign of chords of G(K)×ϕ Zm coincide with those of
G(K ×φ Zm).

Example 3.2. The following diagram is useful to understand the proof of the
previous theorem.

Now, let G be a Gauss diagram and KG an associated virtual knot diagram
of G. Let ϕ : E(G) → Zm be a voltage assignment. Suppose that the net voltage∑

e∈E(G) ϕ(e) is relative prime to m so that G×ϕ Zm is an m-periodic Gauss dia-
gram of a virtual knot whose factor Gauss diagram is G. From now on, we will try to
find out the virtual knot corresponding to the Gauss diagram G×ϕZm. The edge e of
KG corresponds to the edge e′ of G on the circle. Define a map φ : E(KG) → Zm by

φ(e) = ϕ(e′).

Since φ is a voltage assignment, we have the covering graph KG ×φ Zm. From the
construction of KG ×φ Zm, the covering KG ×φ Zm is an m-periodic virtual knot
diagram whose factor is KG.

Theorem 3.2. The virtual knot corresponding to a periodic Gauss diagram G×ϕ

Zm is equivalent to the periodic virtual knot KG ×φ Zm whose factor KG is the
virtual knot corresponding to the factor Gauss diagram G.
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Proof. By Theorem 3.1, the Gauss diagram G×ϕ Zm is the same with the Gauss
diagram of KG ×φ Zm. Then by Proposition 3.1, the virtual knot corresponding to
G ×ϕ Zm is equivalent to the virtual knot KG ×φ Zm.

4. The Affine Index Polynomial and the Writhe
Polynomial of a Periodic Virtual Knot

In the previous section, we constructed an m-periodic Gauss diagram G(K)×ϕ Zm

whose factor is G(K), and showed that G(K) ×ϕ Zm is the Gauss diagram of a
periodic virtual knot K ×φ Zm. Hence, if there is an invariant of virtual knots
which can be determined by Gauss diagrams, then one may calculate the invariants
of periodic knots. It is known that the affine index polynomial and the writhe
polynomial are such invariants. In this section, we give formulae for the writhe
polynomial and the affine index polynomial of periodic virtual knots by using those
of factor knots.

4.1. The affine index polynomial of a periodic virtual knot

Kauffman introduced the affine index polynomial of a virtual knot L [7]. In order
to define the affine index polynomial of L, we give an integer to each edge in a
diagram K of L. Here an edge means a part of K from a classical crossing to
the next classical crossing along the orientation of K. First, choose any edge e of
K and assign any integer a to e. The terminal point c of e is a classical cross-
ing of K. There are four cases according to under/over information at c and to
the orientation of K in Fig. 9. Notice that we do not concern the virtual cross-
ings. To the edge f of K meeting e linearly at c, assign a + 1 or a − 1 according
to the rule in Fig. 9. It is known that one can assign an integer to each edge
of K by repeating this process. The labeling rule around a crossing is given in
Fig. 10.

The weight of a crossing ci is defined by

W (ci) =

{
a − b − 1, ω(ci) = +1;

b + 1 − a, ω(ci) = −1.

-+ + -

ff f f

Fig. 9.
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+ -

Fig. 10.

+

  b+1        b

-

b          b+1

cc

c c

Fig. 11.

The affine index polynomial AK(t) of a virtual knot K is defined by

AK(t) =
∑
ci

ω(ci)(tW (ci) − 1),

where ω(ci) is the writhe number of ci. The integer labeling is not unique, but the
affine index polynomial is well-defined and an invariant of virtual knots, see [7].

Let G(K) be the corresponding Gauss diagram of K. The labeling rule of K

around a crossing c is translated as the labeling rule of G(K) around the chord
corresponding to the crossing c as in Fig. 11. Notice that our labeling of K or,
G(K) is not the voltage assignment for the covering construction.

Let K be a virtual knot diagram and φ : E(K) → Zm a voltage assignment.
Suppose that the net voltage

∑
e∈E(K) φ(e) is relative prime to m so that K ×φ Zm

is an m-periodic knot diagram. Let c be a crossing of K. Then the fiber of c consists
of the crossings (c, 0), (c, 1), . . . , (c, m − 1) of K ×φ Zm.

Lemma 4.1. ω(c) = ω((c, g)) and W (c) = W ((c, g)) for all g ∈ Zm.

Proof. From Theorem 3.1, the Gauss diagram G(K)×ϕ Zm is the Gauss diagram
of K×φ Zm whose factor is G(K). Let c̃′ be a chord of G(K)×ϕ Zm. Then there are
a chord c′ in G(K) and an element k in Zm such that c̃′ = (c′, k). Since the sign of
the chord (c′, k) coincides with that of c′, ω(c′) = ω((c′, k)). Hence ω(c) = ω((c, g))
for all g ∈ Zm.

In order to calculate the weight W (c′) of the chord c′, we need a labeling for
every edge of G(K). Without loss of generality, we give 0 to the edge e′ of G(K)
on the circle whose initial vertex is one of two ends of the chord c′, say c′o. Then

1540008-9
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c

c o

c u

 e       
( , )

c(

c o

( , )c u

 e       ( , )

Fig. 12.

the labeling of edges of G(K) is given so that the weight W (c′) of the chord c′ is
calculated by the labeling rule defined as in Fig. 11, say W (c′) = a. Then by the
definition of the weight, the local shape of G(K) near the chord c′ is depicted as
the left of Fig. 12. Note that since the value of the edge e′ is 0, the sum of labeling
of all edges of G(K) is 0. To calculate the weight W ((c′, k)) of the chord (c′, k), one
can give 0 to the edge (e′, k) of G(K)×ϕ Zm whose initial vertex is (c′o, k). See the
right of Fig. 12.

On the other hand, let V (G(K)) be the set of all vertices of G(K) and T (G(K))
the set of all vertices of G(K) from c′o to c′u according to the orientation of the
circle of G(K). From the construction of G(K) ×ϕ Zm, the set of all vertices from
the vertex (c′o, k) to the vertex (c′u, k) is T (G(K)) ∪ (

⋃l
i=0(V (G(K)))) for some

l ∈ Zm. Since the sum of labeling of all edges of G(K) is 0, the value of the
labeling on the adjacent left edge of (c′u, k) is −a because the sign and direction
of chords of G(K) ×ϕ Zm coincide with those of G(K). Then W ((c′, k))=W (c′).
Hence W (c)= W ((c, g)) for all g ∈ Zm.

Example 4.1. Figure 13 is an illustration of the proof for Lemma 4.1.

Theorem 4.2. The affine index polynomial AK×φZm(t) of K ×φ Zm is given as

AK×φZm(t) = m · AK(t).

Proof. Suppose that the set V (K) of all classical crossings of K is {c1, c2, . . . , cn}.
Then the set V (K ×φ Zm) of all classical crossings of K ×φ Zm is {(ci, g) | ci ∈

Fig. 13.
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V (K), g ∈ Zm}.
AK×φZm(t) =

∑
(ci,g)

ω((ci, g))(tW ((ci,g)) − 1)

=
∑
(ci,g)

ω((ci, g))tW ((ci,g)) −
∑
(ci,g)

ω((ci, g))

=
∑

(c1,g)

ω((c1, g))tW ((c1,g)) +
∑

(c2,g)

ω((c2, g))tW ((c2,g))

+ · · ·+
∑

(cn,g)

ω((cn, g))tW ((cn,g)) −
∑
(ci,g)

ω((ci, g))

= m
∑
c1

ω(c1)tW (c1) + m
∑
c2

ω(c2)tW (c2)

+ · · ·+ m
∑

cn∈K

ω(cn)tW (cn) − m
∑
ci

ω(ci) (by Lemma 4.1)

= m

(∑
ci

ω(ci)tW (ci) −
∑
ci

ω(ci)

)
= m · AK(t).

Corollary 4.2. Let K be a virtual knot of period m with a factor knot K∗. Then
the affine index polynomial AK(t) of K is given as

AK(t) = m · AK∗(t).

Example 4.3. (1) The Affine index polynomial AK4.27(t) of K4.27 is t−1 +2−
t− 2t3. Since the affine index polynomial takes values in a Laurent polynomial ring
with coefficients in Z, K4.27 does not admit any diagram with periodic structure
by Corollary 4.2.
(2) It is known that the virtual knot K4.73 has 2-period structure, see [8]. By a

direct calculation, one can see that the affine index polynomial AK4.73(t) of
K4.73 is 2(−t−1 − t + 2). The Gauss diagram G(K4.73) can be given as the

K 4.27

Fig. 14.
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K 4.73

-

-
-

-

K 4.73G( )

-

-

K 2.1K 4.73G( ) *

Fig. 15.

second picture of Fig. 15 which admits 2-periodic structure. The factor Gauss
diagram G(K4.73)∗ can be given as the third picture of Fig. 15 that corresponds
to the virtual knot of the last picture of Fig. 15. Furthermore, one can see that
the last picture is a diagram of K2.1 and the affine index polynomial of K2.1 is
−t−1 − t + 2.

4.2. The writhe polynomial of a periodic virtual knot

Without loss of generality, we may assume that every chord in a Gauss diagram is
a straight line segment. A chord may meet other chords in the Gauss diagram. A
chord is said to be odd if it meets an odd number of chords in the Gauss diagram;
otherwise, it is said to be even, see [9]. The parity of a crossing in a virtual knot
diagram can be defined as the parity of the corresponding chord. Let Odd(K) and
ω(c) denote the set of all odd crossings of K and the writhe number of a crossing
c of K, respectively. The odd writhe J(K) of a virtual knot K is defined as

J(K) =
∑

ci∈Odd(K)

ω(ci).

If K is a classical knot, then Odd(K) = φ so that J(K) = 0. It is an invariant of
virtual knots, even though the writhe is not an invariant of classical knots.

Let K be a virtual knot diagram and φ : E(K) → Zm a voltage assignment.
Suppose that the net voltage

∑
e∈E(K) φ(e) is relative prime to m so that K ×φ Zm

is an m-periodic knot diagram. Let c be a crossing of K. Then the fiber of c consists
of the crossings (c, 0), (c, 1), . . . , (c, m − 1) of K ×φ Zm.

Lemma 4.3. If a crossing c is an odd crossing (respectively, an even crossing) of
K, then the crossings (c, 0), (c, 1), . . . , (c, m− 1) which are in the fiber of c are also
odd crossings (respectively, even crossings) of K ×φ Zm.

Proof. From Theorem 3.1, the Gauss diagram G(K)×ϕ Zm is the Gauss diagram
of K ×φ Zm whose factor is G(K). Suppose that c is an odd crossing of K. Then
the corresponding chord c′ of G(K) is also odd. That is, there are odd vertices,
say a, from c′o to c′u on the Gauss diagram G(K) according to the orientation
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of the circle of G(K). Since the number of vertices of G(K) is 2|V (K)|, from the
construction of G(K)×ϕ Zm, the number of vertices from the vertex (c′o, g) to the
vertex (c′u, g) on the Gauss diagram G(K) ×ϕ Zm according to the orientation of
the circle of G(K) ×ϕ Zm is a + 2i|V (K)| for some i ∈ Zm, where |V (K)| is the
number of crossings of K. Since a is odd, the chord (c, g) is odd.

Suppose that c is an even crossing of K. The proof is similar to the previous
case. The proof is finished.

Theorem 4.4. The odd writhe J(K ×φ Zm) of K ×φ Zm is given as

J(K ×φ Zm) = m · J(K).

Proof. Suppose that Odd(K) = {c1, c2, . . . , cn}. By Lemma 4.3, Odd(K×φ Zm) =
{(ci, g) | ci ∈ V (K), g ∈ Zm}.
J(K ×φ Zm) =

∑
(ci,g)

ω((ci, g))

=
∑

(c1,g)

ω((c1, g)) +
∑

(c2,g)

ω((c2, g)) + · · · +
∑

(cn,g)

ω((cn, g))

= m
∑
c1

ω(c1) + m
∑
c2

ω(c2) + · · · + m
∑
cn

ω(cn) (by Lemma 4.3)

= m · J(K).

Corollary 4.4. Let K be a virtual knot of period m with factor knot K∗. Then the
odd writhe J(K) of a virtual knot K is given as

J(K) = m · J(K∗).

In [2], Cheng defined the odd writhe polynomial that is defined as follows. Let
K be a virtual knot diagram and G(K) the associated Gauss diagram of K. First,
choose any edge e on the circle of G(K) and assign an integer x to e arbitrarily.
When one move along the orientation of the circle, the terminal point of e meets
a chord c of G(K). There are four cases according to the sign on c and to the
orientation on c, as in Fig. 16. To the edge f on the circle meeting e at the chord
c, assign x + 1 or x − 1 according to the rule in Fig. 16. It is known that one can
assign an integer to each edge on the circle of G(K) by repeating this process. The
labeling rule around a chord is given in Fig. 17.

For each chord ci, N(ci) is defined by

N(ci) =

{
x − y, ω(ci) = +1,

z − w, ω(ci) = −1.

Then the odd writhe polynomial of K is defined as

fK(t) =
∑

ci∈Odd(K)

ω(ci)tN(ci).
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-+ + -

f fff

Fig. 16.

y+1              y

+

  w         w+1

-

z-1          zx          x-1

cici

ci ci

Fig. 17.

The odd writhe polynomial fK(t) is a virtual knot invariant and it can distin-
guish some virtual knots from its inverse and mirror image, see [2]. In [3], Cheng
and Gao showed that N(ci) = W (ci) + 1.

Theorem 4.5. The odd writhe polynomial fK×φZm(t) of K ×φ Zm is given as

fK×φZm(t) = m · fK(t).

Proof. Suppose that Odd(K) = {c1, c2, . . . , cn}. By Lemma 4.3, Odd(K×φ Zm) =
{(ci, g) | ci ∈ Odd(K), g ∈ Zm}.

fK×φZm(t) =
∑
(ci,g)

ω((ci, g))tN((ci,g))

=
∑

(c1,g)

ω((c1, g))tN((c1,g)) +
∑

(c2,g)

ω((c2, g))tN((c2,g))

+ · · · +
∑

(cn,g)

ω((cn, g))tN((cn,g))

=
∑

(c1,g)

ω((c1, g))tW ((c1,g))+1 +
∑

(c2,g)

ω((c2, g))tW ((c2,g))+1

+ · · · +
∑

(cn,g)

ω((cn, g))tW ((cn,g))+1

= m
∑
c1

ω(c1)tW (c1)+1 + m
∑
c2

ω(c2)tW (c2)+1

1540008-14

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
01

5.
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
Y

U
N

G
PO

O
K

 N
A

T
IO

N
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/1
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

September 30, 2015 12:14 WSPC/S0218-2165 134-JKTR 1540008

On Gauss diagrams of periodic knots

+ · · · + m
∑
cn

ω(cn)tW (cn)+1 (by Lemma 4.1)

= m
∑
c1

ω(c1)tN(c1) + m
∑
c2

ω(c2)tN(c1)

+ · · · + m
∑
(cn)

ω(cn)tN(cn) = m · fK(t).

Corollary 4.5. Let K be a virtual knot of period m with factor knot K∗. Then the
odd writhe polynomial fK(t) of a virtual knot K is given as

fK(t) = m · fK∗(t).

But if a virtual knot diagram has no odd crossing, then the odd writhe polyno-
mial is trivial, so that Cheng and Gao [3] defined the writhe polynomial. Given a
Gauss diagram, consider a chord c of it. Without loss of generality, we may assume
that the direction of the chord c is directed from top to bottom as seen in Fig. 18.
The chord c may meet other chords in the Gauss diagram. Let r+(respectively, r−)
denote the number of positive (respectively, negative) chords which meet c whose
direction from left to right, let l+(respectively, l−) denote the number of positive
(respectively, negative) chords which meet c whose direction from right to left as
seen in Fig. 18. The index of c is defined as

Ind(c) = r+ − r− − l+ + l−.

In order to define the writhe polynomial, they used a sequence of parities which
is defined by Manturov in [9]. For a given crossing c in K, define a sequence of
parities as follows: c is{

odd, if Ind(c) = 2k mod 2k+1;

even, if Ind(c) = 0 mod 2k+1.

Define a sequence of polynomials as follows.

fk(t) =
∑

ci∈OddK(K)

w(ci)tN(ci),

+

r+

c

r-

r-

l+

+

-

-

Fig. 18.
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where Oddk(t) denotes the set of all odd crossings of K according to the above
parity. Hence, The writhe polynomial of a virtual knot K was defined by

WK(t) =
∞∑

k=0

fk(t).

Proposition 4.6 ([3]). Given a virtual knot diagram K, the writhe polynomial of
K is given as

WK(t) = (AK(t)) +
∑

Ind(ci) �=0

ω(ci))t,

where AK(t) is the affine index polynomial of K.

Proposition 4.7 ([3]). For a crossing ci in K, N(ci) = Ind(ci) + 1.

Lemma 4.8. For a crossing ci in K, N(ci) = N((ci, g)) for all g ∈ Zm.

Proof. By Lemma 4.1, W (ci) = W ((ci, g)) for all g ∈ Zm. Since N(ci) = W (ci)+1,
N(ci) = N((ci, g)) for all g ∈ Zm.

Theorem 4.9. The writhe polynomial WK×φZm(t) of K ×φ Zm is given as

WK×φZm(t) = m · WK(t).

Proof. Suppose that the set V (K) of all classical crossings of K is {c1, c2, . . . , cn}.
Then the set V (K ×φ Zm) of all classical crossings of K ×φ Zm is {(ci, g) | ci ∈
V (K), g ∈ Zm}.

WK×φZm(t) =

(
AK×φZm(t) +

∑
Ind((ci,g)) �=0

ω((ci, g))
)

t (by Proposition 4.6)

=

(
mAK(t) +

∑
Ind((ci,g)) �=0

ω((ci, g))
)

t (by Theorem 4.2)

=

(
mAK(t) +

∑
N((ci,g)) �=1

ω((ci, g))
)

t (by Proposition 4.7)

=

(
mAK(t) + m

∑
N(ci) �=1

ω(ci)
)

t (by Lemma 4.8)

= m

(
AK(t) +

∑
Ind(ci) �=0

ω(ci)
)

t (by Proposition 4.7)

= m · WK(t) (by Proposition 4.6).

Corollary 4.6. Let K be a virtual knot of period m with factor knot K∗. Then the
writhe polynomial WK(t) of a virtual knot K is given as

WK(t) = m · WK∗(t).
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